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We present a password-authenticated (2, 3)-threshold group key share (PATS) mechanism. Although PATS resembles threshold
secret sharing schemes, it has a different structure. The innovative perspective of the PATS mechanism that makes a difference
from the standard secret-sharing schemes is that it involves parties in the generation of the shares. PATS allows parties to
communicate securely to establish their shares over insecure channels. Parties (shareholders) construct a secret (key) using shares
obtained at the end of the protocol. PATS takes advantage of zero-knowledge proofs compared to well-known threshold key
exchange schemes and will tolerate the existence of semi-trusted parties. We present two variants of PATS, centralized and
distributed, and then generalize PATS to ðt; nÞ:-threshold scheme. PATS supports the distributed operation and optionally facil-
itates group key verification by a trusted third party, which may also partake in group key sharing. In this paper, we present PATS,
which employs finite fields and elliptic curves, along with its security and complexity analyses.

1. Introduction

There is a dealer (a trusted third party, TTP) and n parties in
legacy secret-sharing schemes. A secret value v, which the
dealer knows, is split into n different pieces called shares again
by the dealer. The shares are sent to the corresponding parties
over a secure channel. The dealer knows and controls all of
these n shares. A secret sharing scheme is called ðt; nÞ:-thresh-
old if t or more parties can recover v, but ðt − 1Þ : or fewer
parties cannot easily do it. A ðt; nÞ:-threshold secret sharing
scheme is said to be perfect if no information is disclosed
when fewer than t parties try to construct the secret value v.

In this work, we present a password-authenticated ð2; 3Þ:-
threshold group key-sharing (PATS) mechanism that resem-
bles secret sharing schemes, albeit having a different con-
struction involving parties in the generation of the shares.
The significant difference is the lack of prior knowledge of
the secret used as a group key in this work. Our approach can
be better understood with a simple use case. Assume that
Alice, Bob, and Carol write their wishes about the future on a
piece of paper, store it in a time capsule secured with a

padlock, and promise each other that they will meet after
10 years, open the capsule together using the physical key to
the padlock and check whether or not their wishes will have
come true. They lock the time capsule so that none of them
can change the bet alone without others knowing it. They also
want to open the capsule if a majority is present after 10 years.
They solve this problem by jointly generating a physical key
from some components. Assume that there are three compo-
nents, say c1; c2, and c3, required to construct the physical key,
and each component is cloned. Each party receives two dis-
tinct components; for example, Alice gets c1; c2; Bob gets c1;
c3; and Carol gets c2; c3. All the unique components (original
or cloned) c1; c2, and c3 must be present to construct the
physical key, which can be created by combining the compo-
nents held by any two parties. None of the parties can create
the key alone since there is always a missing component. This
scenario is illustrated in Figure 1.

Several practical scenarios may illustrate the need for the
involvement of parties to generate shares of a group key. This
approach may be employed in the business world, the digital
services industry, or the financial industry. Let us give
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examples of centralized and distributed cases. In the distrib-
uted group key-sharing scenario, assume Alice, Bob, and
Carol are critical infrastructure managers. Out of these three
managers, at least two of them have to be present to execute
a critical transaction. If Alice goes on a vacation, she must
delegate her responsibility to Carol. In such a scenario,
instead of Alice providing Bob with her secret, Carol will
use her share of the key where a (2,3)-threshold group key
sharing mechanism is implemented where shares involve
input from all parties. None of the parties shall run the
transaction alone. Carol and Bob can collaborate and run
the transaction when Alice is off duty. The same scenario
is applicable when any single party is off duty. In this sce-
nario, parties do not need a centralized or trusted party while
initializing the key shares or constructing the shared key
using key shares. In the TTP-verified group key-sharing sce-
nario, assume some transaction requires the approval of the
TTP, such as a banking transaction. For example, Alice, Bob,
and Carol, who have a say in a joint bank account, can only
transfer money with the approval of the majority. If at least
two out of three parties approve the transaction, the bank
acting as the TTP approves and executes the transaction.
Although the bank regulates the key shares, the users (not
the bank) must determine shares jointly without knowing
others’ shares for secrecy. Another example is a password
manager (keychain) that requires multiple devices to reveal a
saved password, which is encrypted using PATS. In this case,
a user who would like to reveal a saved password from a
password manager has to interact with at least two out of
the three predefined devices to collect two shares, generate
the key, and decrypt the saved password. In all these scenar-
ios, (i) none of the parties shall act alone, and (ii) the lack of a
single party shall be tolerated.

In all these aforementioned scenarios, the challenge is to
design a peer-to-peer threshold-based group key generation
protocol where there is no central authority, and peers do not
learn anything about the generated key other than their
shares, although they are involved in the key generation.
Furthermore, one of the peers should not act as an authority
on behalf of the other peers. Based on this challenge, we can
state our research question as to whether it is possible to

construct a threshold-based group key involving only peers
without any central authority or TTP and without any
trusted setup. We address this research question and propose
a password-authenticated ðt; nÞ :-threshold group key share
(PATS) mechanism.

1.1. Challenges and Motivation. Yao et al. [1], Liu et al. [2],
and Abdalla et al. [3] have proposed protocols that leverage a
trusted server responsible for generating shares for each party.
In contrast to performing operations on the client (or partici-
pant) side, Camenisch et al. [4] introduced an approach aimed
at increasing the number of servers required for the verifica-
tion step. Nevertheless, this type of solution is susceptible to
phishing attacks.

Differing from the legacy key-sharing approaches, PATS
does not require a centralized authority or trusted setup.
Therefore, it can be employed in any peer-to-peer network,
ad hoc networks, or in the Internet of Things (IoT) applica-
tions. As a simple example of an application area, assume
that sensors in an IoT application are equipped with a low-
entropy password that reflects that they belong to a group.
However, using this password for securing communications
will not be robust since its entropy is low. PATS allows us to
secure this application by generating shares of a high-entropy
threshold-based group key employing the low-entropy pass-
word in a distributed manner without entitling higher privi-
leges to any one of the sensors (peers). In scenarios that
require a centralized authority or trusted setup, the existing
solutions give extra capabilities to this authority to generate
the shares of parties. This approach will cause concerns in the
case of a breach happening to the centralized authority.

The idea behind the different versions of PATS relies on
the password-authenticated key agreement. There are differ-
ent applications of password-authenticated protocols in the
literature, such as password-authenticated group key exchange
(PGKE) protocols, ðt; nÞ:-threshold secret sharing, or threshold
password-authenticated key exchange (PAKE) protocols. A
group key exchange protocol that is based on password
authentication is called Group PAKE. There is “a fairy-ring
dance” [5] construction to transform any PAKE protocol into
a Group PAKE protocol. The common part of Group PAKE
protocols is either the existence of a shared password with a
common trusted server or the usage of pairwise passwords
between group members. PATS also assumes a preconfigured
common password known to all principals. To the best of
our knowledge, Group PAKE protocols do not implement
threshold-based key construction. Therefore, as a notable dif-
ference from the legacy Group PAKE protocols, PATS imple-
ments threshold-based group key construction without needing
any TTP. On the other hand, the idea behind ðt; nÞ :-threshold
secret sharing protocols is that each party has a portion of the
secret, called a share, and the pieces belonging to at least t of
the parties are sufficient for the construction of the secret. In
these schemes, a secret that is known in advance is used to
create shares, whereas we employ the reverse operation in
PATS for different environments, either centralized or dis-
tributed. Moreover, there is always a TTP (dealer) in secret
sharing protocols. In threshold-PAKE protocols, the concept
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FIGURE 1: PATS scenario for the time capsule.
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of thresholding is different from that of secret sharing. In such
schemes, a client is authenticated by multiple servers, and
acquiring authentication from a subset of authentication ser-
vers is the idea behind thresholding. These are completely
different constructions compared to PATS. Thresholding in
PATS resembles the idea of ðt; nÞ:-threshold secret sharing.

1.2. Our Contributions. In this work, we present a password-
authenticated ð2; 3Þ:-threshold group key-sharing mecha-
nism that resembles secret-sharing schemes. Different than
secret-sharing schemes, our construction involves parties in
the generation of the shares. The significant difference is the
lack of prior knowledge of the secret used as a group key in
this work. Parties run a mutual agreement procedure, and
pieces of information that help construct a group key are
produced in a distributed fashion over insecure channels.
The parties do not know others’ shares. The shares are blended
at the key usage stage. PATS does not require a fully TTP.

In summary, our contributions are four-fold:

(1) First, although PATS resembles threshold secret-sharing
schemes, it has a different structure and approach, as
demonstrated by the abovementioned use cases. There
is no sharing of prior confidential information in PATS,
and a trusted setup is not required.

(2) Second, in legacy secret sharing, there is a secret
known to the dealer at the beginning of the protocol,
and the shares of the secret are provided to the par-
ties by the dealer. However, the secret (key) is not
known in advance in PATS. PATS allows parties to
construct a secret (key) using their shares obtained at
the end of the protocol. In other words, legacy secret
sharing starts from the secret and constructs the
shares. PATS follows the opposite approach, where
parties communicate to establish their shares securely
over insecure channels. The shares will help them (or
a TTP) construct the group key. When there is a data
breach in a dealer of a legacy secret sharing, shares of
each party may be exposed.

(3) Third, as the main contribution of this work, we
propose a zero-knowledge (2,3)-threshold PAKE
scheme that we call PATS, which involves parties
in group key sharing. This protocol takes advantage
of zero-knowledge proofs compared to well-known
threshold key exchange schemes and will tolerate the
existence of semi-trusted parties.

(4) Fourth, we present centralized and distributed PATS
variants and then generalize PATS to ðt; nÞ:-threshold
scheme. PATS supports the distributed operation
and facilitates verification of the key by a TTP that
may also partake in group key sharing.

1.3. Outline. In Section 2, we review several PAKE protocols
from which PATS is inspired by threshold key sharing and
threshold key exchange protocols. Section 3 presents (2,3)-
threshold PATS mechanism. Two variants employing finite
fields and elliptic curves are presented for the TTP-verified
and distributed (2,3)-PATS. Section 4 generalizes the scheme

to ðt; nÞ:-PATS. Section 5 is devoted to the security analysis of
PATS based on the predefined security requirements. In Sec-
tion 6, the PATS scheme is evaluated numerically. Finally, we
will conclude the paper.

2. Related Work

In this section, we first review the PGKE protocols and then
present threshold secret-sharing approaches by comparing
the related work to PATS.

2.1. PGKE Protocols. A group key can be generated by employ-
ing PAKE protocols [1, 2, 5, 6, 7, 8, 9]. Two parties can use an
authenticated key exchange (AKE) protocol to communicate
securely. If the number of parties in a communication
increases, a Group AKE protocol can be established. Instead
of any public key infrastructure (PKI), a Group AKE protocol
can be based on password authentication and is called Group
PAKE (or PGKE). PGKE protocols enable parties to use low-
entropy passwords to resist attacks coming from insiders. In
the literature, PAKE protocols have essential contributions.
However, PGKE has not received the same attention.

Asokan and Ginzboorg [10] proposed a PGKE protocol
in ad hoc networks that do not provide formal security proof
of the protocol. Bresson et al. [11] provide a provable security
framework using Diffie–Hellman key exchange to assess the
security of PGKE protocols. Yao et al. [1] proposed a PGKE
protocol in which each party shares a different password
with a trusted server. Using a similar approach to Bresson
et al. [11], they provide formal proof of the protocol’s security.
Similarly, Liu et al. [2] proposed a password-based authenti-
cation key exchange protocol for groups, called nPAKE, in
which each party shares a password with a trusted server and a
temporary encryption key with the adjacent parties with the
help of the server. The protocol’s security is based on the
chosen-based computation Diffie–Hellman assumption prob-
lem. It is also shown that the protocol is secure against dictio-
nary attacks and man-in-the-middle attacks. In 2015, Hao et al.
[5] presented a “fairy-ring dance” construction that trans-
forms any PAKE protocol into a PGKE protocol. The paper
provides two protocols, SPEKE+ and J-PAKE+, requiring 2
and 3 rounds consecutively. They showed that both protocols
are secure against offline dictionary attacks while providing
forward secrecy and known-session security. In 2018, Wei
et al. [9] proposed a compiler that can convert any Group
KE protocol into a secure PGKE protocol with two extra
rounds of communication overhead. The paper includes the
security proof of the compiler in the standard model.

2.2. Threshold Secret Sharing. Threshold secret sharing was
invented separately by Blakley [12] and Shamir [13]. In (t,n)-
threshold secret sharing, there are n parties that each hold a
part of the secret, called shares, and t of the parties’ part will
reconstruct the secret. It is called threshold since less than
t parties will not gain any information about the secret.

There are several well-known secret-sharing schemes
applying different approaches, such as Shamir’s Secret Shar-
ing [13], Blakley’s Secret Sharing [12], and Mignotte’s and
Asmuth-Bloom’s Schemes [14]. Shamir’s secret sharing is
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based on Lagrange interpolation over finite fields using the
fact that to determine a polynomial of degree less than or
equal to t −1 uniquely, t points are enough. This scheme is
perfect since no information is leaked by the shared. Also, it
is ideal since the length of each share is equal to the resulting
secret. Blakley’s secret sharing is based on hyperplane geometry.
The dealer distributes a t-dimensional hyperplane equation over
a field to each party. The intersection of these hyperplanes will
give the secret. Asmut-Bloom secret sharing is based on the
Chinese Remainder Theorem. Krawczyk’s secret sharing is
based on the existence of a one-way function. Having equal-
length shares in a secret sharing scheme provides information-
theoretic security. Instead of information-theoretic security,
this work depends on computational security against resource-
bounded adversaries.

A secret sharing scheme can be verifiable or publicly veri-
fiable. In a verifiable secret sharing scheme, parties and the
dealer verify the consistency of their shares in a 2-phase pro-
tocol. The notion of verifiability was first introduced by Chor
et al. [15]. In the sharing phase, the dealer distributes the
secret to n parties such that less than t parties will not deduce
any information, similar to threshold secret sharing. In the
reconstruction phase, each party brings their information to
reconstruct the secret.

There are several well-known verifiable secret-sharing
schemes, such as Chor–Goldwasser–Micali–Awerbuch’s scheme
[15], Feldman’s scheme [16], and Benaloh’s scheme [17].

Threshold secret sharing is also used in password-based
single-sign-on authentication schemes. Zhang et al. [18] proposed
a secure and efficient single-sign-on authentication scheme
for mobile users. The protocol is shown to provide stronger
security compared to existing schemes under the defined
adversary model. Jiang et al. [19] proposed a password-based
single-sing-on authentication protocol based on lattices. Using
lattices, the proposed protocol is quantum-resistant and resis-
tant to offline password-guessing attacks.

There are threshold secret-sharing protocols that take
advantage of authentication servers. In this case, when t of
the n authentication servers communicates, the authentica-
tion is successful. Abdalla et al. [3] proposed a threshold
password-based authenticated key exchange (GTPAKE) pro-
tocol in which authentication servers act as two different
parties, consisting of a gateway that handles the communi-
cation with the clients and a back-end-server used to check
the identity of a client. Camenisch et al. [4] proposed a proto-
col in which the verification process is distributed to multiple
servers, and the password will remain secure as long as the
number of breached servers is less than the threshold. This
type of threshold password-authenticated secret sharing, called
TPASS, was previously proposed by Bagherzandi et al. [20]
and Camenisch et al. [21]; however, they are vulnerable to
phishing attacks in which users interact with malicious servers.

2.3. Group Key Agreement (GKA) Protocols. In group com-
munications, GKA protocols are widely used to provide
secure communication. There are two types of GKA proto-
cols, namely centralized GKA and distributed GKA. In their
paper, Zhang et al. [22] proposed a threshold authenticated

group key protocol based on Shamir’s secret sharing for
unmanned aerial vehicle (UAV) ad hoc network (UANET).
Since the environment for UAVs requires dynamic interac-
tion and wireless communication, which would cause tem-
porary disconnection from a group, having a stable GKA is
important to address these problems. Their solution consid-
ers the disconnection of group members, as well as a group
key recovery protocol in case a disconnected tries to recon-
nect and obtain the latest group key.

3. PATS: Password-Authenticated
(2,3)-Threshold Key Exchange

In this section, we present the details of the zero-knowledge
(2,3)-threshold password-authenticated key exchange (PATS)
schemes where shares are constructed mutually over public
channels. PATS uses the general approach of the PAKEprotocol
that we will briefly present in the sequel. After presenting the
(2,3)-threshold PATS, we will generalize this approach to n
parties and present the ðt; nÞ :-threshold PATS. First, we will
define the distributed approach called distributed (2,3)-PATS,
where there is no TTP in the protocol, and each party creates the
shares of a group key. We present two variants of this scheme.
The first is implemented in finite fields, and the second is imple-
mented using elliptic curves. Then, we present the centralized
approach that requires a TTP.

3.1. PATS Inspired by PAKE. A PAKE protocol provides two
or more parties a secure authenticated communication over
an insecure channel and establishes a high-entropy crypto-
graphic key using a shared low-entropy secret such as a
humanly-memorable password. While many password-
based protocols risk offline attacks [23], the AKE protocols
prevent such vulnerabilities. Among many other PAKE pro-
tocols, treating PAKE as a secure two-party computation
problem, password-authenticated key exchange by juggling
(J-PAKE) stands out from the rest.

J-PAKE depends on zero-knowledge proofs [24, 25, 26].
J-PAKE, standardized in ISO/IEC 11770-4 and RFC 8236
[27, 28], is a balanced PAKE protocol, and it does not require
any PKI deployments, Hash-to-Group function, or a trusted
setup. Such independence makes J-PAKE’s implementation
simple. The protocol is used over finite fields and elliptic
curves. We give a brief overview of J-PAKE over a finite field.

J-PAKE relies on the hardness assumption of the deci-
sion Diffie–Hellman (DDH) problem. Two parties, Alice and
Bob, have a shared password s, and they agree on an element
g of Z∗

p of prime order q: Both parties randomly choose their
private key pairs where the first component is in the range
½0; q− 1� :, and the second component is in the range ½1; q− 1� :.
Say Alice chooses ðx1; x2Þ : and Bob chooses ðx3; x4Þ :: They
compute and interchange all gxi values over an unsecured
network with the zero-knowledge proofs of the exponents. In
the second round, Alice computes A¼gðx1þx3þx4Þx2s and Bob
computes B¼gðx1þx2þx3Þx4s: They send these values to each
other with a ZKP of their secret exponents x2s and x4s: Now
both can compute the keying material K ¼ðA=gx2x4sÞx4 ¼
gðx1þx3Þx2x4s ¼ðB=gx2x4sÞx2 : Then the session key is derived
by a hash (or key generation) function k¼HðKÞ ::

4 IET Information Security

 ietis, 2024, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/2024/7557514 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PATS is inspired by PAKE. It relies on the DDH pro-
blem’s hardness assumption. As the shares are constructed, it
uses the juggling method of J-PAKE and provides mutual
authentication among three parties via a shared password.

3.2. Design Challenges. To develop PATS, security and effi-
ciency are the two important motivations that we focused on:

(1) Security: Using a PAKE protocol in the protocol’s core
allows us a way to establish a high-entropy cryptographic
key from a low-entropy secret. While password-based
protocols are prone to offline attacks, the AKE protocols
overcome this vulnerability. The protocol also takes
advantage of zero-knowledge proofs compared to
well-known threshold key exchange schemes.

(2) Efficiency: One variant of the PATS depends on the
elliptic curves. The computation over elliptic curves is
known to use smaller coefficients but provides similar
security strength compared to finite field calculation.

According to Zipf ’s law [29, 30], the space of user-chosen
passwords is constrained compared to the space of all possi-
ble passwords. It is stated that the advantage for guessing will
be over 0.5 in some cases. In PATS, the final secret key has
different components. For the TTP-verified version, the bi
values are provided by the TTP, and ai values are generated
by the parties. For the distributed version, the ai and bi values
are generated by the parties. However, for any party Pi,
accessing the values aj and bj for j ≠ i is equal to having a
solution to the DDH problem. The secret key K also requires
the value of s that is shared between parties. Therefore, Zipf ’s
law does not have an impact on the value of K .

3.3. Distributed (2,3)-PATS. In some scenarios, such as the one
we mentioned earlier in Section 1, about Alice and her friends’
time capsule, the parties do not require any centralized entity
(e.g., a TTP). They may have to run a distributed protocol for
sharing the group key. Both ephemeral key integers, ai and bi,
are selected by the party Pi. There is no TTP verification.When-
ever a group key is necessary, any two among three parties use
their shares to construct the group key. This section presents two
variants that use finite fields or elliptic curves.

3.3.1. Distributed (2,3)-PATS in Finite Fields. Assume there
are three parties, P1; P2, and P3, who share a common low-
entropy password s in the range ½1; q− 1� :. The parties will
establish a common (2,3)-threshold group key. Any two out
of three parties can construct the group key collaboratively.
Let p and q be large primes such that q is a divisor of p− 1.
Let g be an element of Z∗

p of order q. The communicating
parties, P1; P2, and P3 agree on the ðp; q;gÞ: value string,
which can be hard-wired in software. The architectural dia-
gram of this protocol is given in Figure 2. Distributed (2,3)-
PATS involves three rounds, as shown in Figure 3.

(1) Round 1: Each party Pi for i¼ 1; 2; 3 selects ephemeral
private key integers ai uniform randomly from ½0; q− 1� :,
bi uniform randomly from ½1; q− 1� : and then broad-
casts gai mod  p and gbi mod  p together with the zero-
knowledge proofs of the exponents ai; bi. For example,
Schnorr’s non-interactive zero-knowledge (NIZK)
proof, as used in J-PAKE, can be employed here
[31]. When the round finishes, each party checks that
the received ZKPs are valid. Also, each party Pi checks

Exchange messages
ga1, ga2, gb1, gb2,

h1, h2

Exchange messages
ga2, ga3, gb2, gb3,

h2, h3

Exchange messages
ga1, ga3, gb1, gb3,

h1, h3

Evaluates its key share
K1 = (K12, K13)

Evaluates its key share
K2 = (K21, K23)

Evaluates its key share
K3 = (K31, K32)

Constructed group key K = K12K13K23

P2
knows s

Selects ephemeral
keys a2, b2

P3
knows s

Selects ephemeral
keys a3, b3

P1
knows s

Selects ephemeral
keys a1, b1

FIGURE 2: Architectural diagram of distributed (2,3)-PATS in finite fields.
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that gbj ≢ 1mod  p for j ≠ i. If any of these checks fail,
this session should be canceled.

(2) Round 2: Each party Pi computes and broadcasts
hi ¼ðg∑3

j¼1ajþ∑j≠i bjÞbis together with the zero-knowledge
proofs of the exponent bis. Again, at the end of the
round, each party checks that the received ZKP is valid.
Also, party Pi should ensure that the elements hj and
ht are non-identity.

(3) Round 3: Each party Pi computes its secret shadow Ki
where Ki ¼ðKij;KilÞ : ¼ððhjðgbjbisÞ−1Þbi ; ðhlðgblbisÞ−1ÞbiÞ ::
Notice that the indices commute Kij ¼Kji.

Whenever the necessity of a group key emerges, any two
among three parties use their shares and construct the group
key K ¼KijKilKjl ¼KjiKjlKli ¼KijKilKlj: Figure 3 shows the
flow of the protocol. Note that instead of directly using K ,
it can be used as input to a key generation function.

Claim 1. Kij ¼Kji

Proof.

Kij ¼ hj gbjbis
À Á

−1
À Á

bi

¼ g∑
3
k¼1ak þ ∑k≠jbk

� �
bjs gbjbis
À Á

−1
� �

bi

¼ g∑
3
k¼1akbjsþ ∑ k ≠ i

k ≠ j
bkbjs

 !
bi

¼ g∑
3
k¼1akbisþ ∑ k ≠ i

k ≠ j
bkbis

 !
bj

¼ g∑
3
k¼1ak þ ∑k≠ibk

� �
bis gbibjs
À Á

−1
� �

bj

¼ hi gbibjs
À Á

−1
À Á

bj

¼ Kji:

ð1Þ

□

In practice, the final step will be combining the shares
from at least two parties and generating the group key with-
out revealing each share independently to other parties. Let us
now revisit the time capsule example presented in Section 1.
The time capsule is a trusted combiner that does not copy the
shared values given as input. Each party uses its shares (in this
case, the physical key components that are used to construct
the key of the padlock) to open the padlock on the time
capsule. To open the time capsule, at least two parties must
come together. Neither the combiner nor the remaining par-
ties have any idea about the value of each share of other
parties.

3.3.2. Distributed (2,3)-PATS Using Elliptic Curves. Initially,
all parties agree on the domain parameters. Namely, they
agree on the sequence ðp; a; b;G; q; hÞ : where p and q are
large primes, the elliptic curve E is the curve satisfying the
equation y2 ¼ x3 þ axþ b defined over the prime field Fp, the
base point G has order q, and h is the cofactor, a small
integer. One may wish to use recommended elliptic curves
by NIST for key establishment schemes in SP 800-56A [32].
As in the finite field case, we assume there are three parties
P1; P2, and P3 share a common low-entropy password s in
the range ½1; q− 1� :, and they execute the following three
rounds:

(1) Round 1: Each party Pi selects an ephemeral private
key integers ai uniformly random from ½0; q− 1� :, bi
uniformly random from ½1; q− 1� : and then broad-
casts aiG and biG, together with the zero-knowledge
proofs of the multiples ai; bi. At the end of the round,
each party Pi should check that the received ZKPs are
valid and bjG a non-identity element for j ≠ i. If any
of these checks fail, this session should be canceled.

(2) Round 2: Each party Pi computes and broadcasts
Hi ¼ sbið∑3

j¼1aj þ∑j≠i bjÞ :G together with the zero-
knowledge proofs of the multiple sbi. At the end of
the round, each party checks that the received ZKPs
are valid and that the elements Hj and Hk are non-
identity. If any of these checks fail, the session will be
canceled.

(3) Round 3: Each party Pi computes their secret shares
Ki ¼ðKij;KilÞ : where Ki ¼ðKij;KilÞ : ¼ðbiðHj − bjbisGÞ;
biðHl − blbisGÞÞ :. Notice that the indices commute
Kij ¼Kji.

3.4. TTP-Verified (2,3)-PATS. In some scenarios, such as the
banking use-case mentioned above, the secret will eventually
be employed by a centralized entity (e.g., a TTP), for exam-
ple, for encrypting a database or authenticating a transaction.
In such scenarios, the TTP has to use the group key for
conducting the operation where the TTP-verified (2,3)-
PATS can be employed. In Figure 4, we illustrate the archi-
tectural diagram of the proposed protocol. The protocol runs
as in the previous case. However, the only difference is that
ephemeral key integer bis are selected by the TTP and sent to
the parties over a secure channel. Figure 5 shows the flow of
the protocol.

P1 P2 P3

ga1, gb1
ga1, gb1

ga2, gb2 ga2, gb2

ga3, gb3

ga3, gb3

Round 1

h1 h1

h2 h2

h3

h3

Round 2

K1 K1

K2 K2

K3

K3

Round 3

FIGURE 3: Distributed (2,3)-PATS in finite fields.
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Note that in the TTP-verified (2,3)-PATS, not only is the
TTP involved in the process and has a say in the constructed
shares, but also all the parties involved in the process as well.
The TTP verification has two steps. First, it calculates the
shares: TTP has the values s; b1; b2, and b3. Therefore, by
gathering h1; h2, and h3 values from the public channel, it
can recover all shares by imitating the operations done by
the parties. Second, it checks whether these values match the
shares sent by the parties. Here the equality comes from the
fact that indices of the shared shares commute.

Notice that any two parties among three can recover K .
Using K as input, the parties may apply a key derivation
function to derive a common session key k.

In this section, we have presented two variants of the
PATS protocol, employing finite fields and elliptic curves,
respectively. In the next section, we will generalize the
scheme to a ðt; nÞ :-threshold scheme.

4. (t,n)-PATS

In this section, we generalize the (2,3)-PATS to (t,n)-threshold
scheme. Considering the efficiency requirement, in cases
where t is less than n− 1, the authors think that the path
followed in PATS will be cumbersome. We picture the
scheme for distributed variants over finite fields. The gener-
alized version can be phrased straightforwardly on elliptic

Evaluates its key share
K3 = (K31, K32)

Evaluates its key share
K2 = (K21, K23)

Exchange messages
ga1, ga2, gb1, gb2,

h1, h2

Exchange messages
ga1, ga3, gb1, gb3,

h1, h3

Exchange messages
ga2, ga3, gb2, gb3,

h2, h3

Constructed group key K = K12K13K23

K1 b1

K3
b3

K2

b2

P3
knows s

Selects ephemeral
keys a3

P2
knows s

Selects ephemeral
keys a2

P1
knows s

Selects ephemeral
keys a1

Evaluates its key share
K1 = (K12, K13)

TTP
knows s

Selects ephemeral
keys b1, b2, b3

FIGURE 4: Architectural diagram of TTP-verified (2,3)-PATS in finite fields.

TTP

TTP

b1 b2
b3

K1 K2

The secret key
K = K12K13K23

Round 1

Round 0

Round 2

Round 3

Round 4

P1 P2 P3

ga1, gb1 ga1, gb1

ga2, gb2ga2, gb2

ga3, gb3

ga3, gb3

h2 h2

h1 h1

h3

K3

h3

FIGURE 5: TTP-verified (2,3)-PATS in finite fields.
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curves, mutatis mutandis as above, for centralized (t,n)-
PATS over finite fields and elliptic curves. Assume there are
n parties who share a common low-entropy password s in the
range ½1; q− 1�:, and will establish a common ðt; nÞ:-threshold
group key. That is any t among n will have the group key.
Here, s can be a low-entropy group key or a session nonce. A
TTP (dealer) and the communicating parties, P1;…; Pn agree
on ðp; q;gÞ : value string, which can be hard-wired in the
software.

For t¼ n− 1, (t,n)-PATS procedure is as follows:

(1) Round 1: Each party Pi selects ephemeral private key
integers ai and bi uniformly at random from ½0; q− 1� :

and ½1; q− 1� :, respectively. Then broadcasts gai mod  p
and gbi mod  p together with the zero-knowledge
proofs of the exponents ai; bi:When the round finishes,
each party checks that the received ZKPs are valid. Also,
each party Pi checks that gbj ≢ 1mod  p for j ≠ i. If any
of these checks fail, this session should be canceled.

(2) Round 2: Each party Pi computes and broadcasts
hi ¼ðg∑n

j¼1ajþ∑j≠i bjÞbis together with the zero-knowledge
proofs of the exponent bis: Again, at the end of the
round, each party Pi checks that the received ZKPs and
the received elements hj for j ≠ i are nonidentities.

(3) Round 3: Each party Pi computes their secret shares
sequence Ki ¼ðKijÞj≠i where Kij ¼ðhj × ðgbjbisÞ−1Þbi .

After the first three rounds end, ðn− 1; nÞ:-PATS is com-
pleted. When t¼ n− r, taking ðn− 1; nÞ :-PATS as the initial
step, ðt; nÞ:-PATS will be calculated iteratively. Each iteration
step consists of two rounds. Suppose in the ðk − 1Þth iteration
step each participant Pi computed its key shares Ki ¼
fKij1…jk−1g: where ji’s are distinct entries from I¼f1;…; ng
:nfig :. At kth iteration step, in Round 1, each Pi calculates the
exponent set fðgbj1…bjk−1 Þbig: where indices jr ranges over I
and distinct. After the first round of the kth iteration step, the
set fðgbj1…bjk−1 Þbigjr2I will be broadcasted with the keyshare
sequence Ki. In the second round of the kth iteration step, Pi
computes the new key share sequence Ki ¼fKij1…jkgjr2I
where Kij1…jk ¼ ½Kj1…jk × ½ðgbj1…bjk Þbis�−1�bi .

In this section, we have how the ðt; nÞ:-threshold gener-
alization of PATS works. In the next section, we will first give
the adversary model and define security requirements that
PATS shall satisfy. The section will end with a detailed anal-
ysis of PATS, showing how the mentioned requirements are
fulfilled.

5. Security Analysis of PATS

In this section, we will discuss an adversary model stating the
capabilities of an attacker, common security requirements
of PAKE protocols, and how PATS satisfies the security
requirements.

5.1. Adversary Model. To define security requirements and
show that PATS satisfies them, it is important to understand
the capabilities of an attacker. An adversary A is assumed to
have the following capabilities:

(1) Similar to conventional PAKE protocols, A is assumed
to have full control over the communication channel
between parties, eavesdropping, tampering, deleting,
and changing messages gathered over the public
channel.

(2) A can generate all possible values of s since PATS
assumes that low-entropy password s is in the range
½1; q− 1�:.

(3) A is able to learn the previous session keys ai’s and
bi’s.

5.2. Security Requirements. PATS shall satisfy the following
security requirements:

(1) Offline dictionary attack resistance: An active/passive
attacker has no advantage in verifying the correctness
of password guesses.

(2) Forward secrecy [33]: If the password is disclosed
later, the current session keys will remain secure.

(3) Known-session security: If any session is disclosed,
other established sessions will not be affected and will
remain secure.

(4) Online dictionary attack resistance: An active attacker
is limited to testing only one password per execution
of the protocol.

(5) Man-in-the-middle attack resistance [2]: Man-in-
the-middle attack happens when an active attacker
stays in the middle of the communication to relay
and alter messages. At the same time, parties believe
that they directly communicate with each other.

(6) Replay attack resistance [34, 35]: Replay attack is a
man-in-the-middle attack in which the communica-
tion is delayed or replayed by a passive attacker.

5.3. Analysis. Previously, we have defined an adversary model.
According to this model, first, an attacker A is assumed to
have full control over the communication channel between
parties, being able to eavesdrop, tamper, delete, and change
messages. Since the protocols include zero-knowledge proofs
of the exponents ai’s and bi’s, and they depend on the DDH
problem, accessing each value to generate Ki’s is not feasible.
Second, A can generate all possible values of s. However, s is
not the only component of the secret key K . A should also
know ai and bi values, as well as the value of g. Finally, A can
learn the previous session keys ai’s and bi’s. Since every time
PATS runs, parties are expected to select new ai and bi values.
Knowing any previous session keys would not provide any
advantage.

PATS provides several security features, some of them
coming from the existence of zero-knowledge proofs and the
use of threshold group key sharing in the protocol. Being a
threshold key exchange scheme, failure or malfunction of
some entities will not affect the scheme. Owing to the follow-
ing lemma, we can ensure the resistance of PATS to offline
dictionary attacks.
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Lemma 1. For any party Pk; if k ≠ i the exponent Xi ¼
∑n

j¼1aj þ∑j≠i bj is a secret random value over Zq.

Proof. ai and bi values are uniform randomly selected over
the intervals ½0; q− 1� : and ½1; q− 1� :, respectively. Pk only
knows the value of ak; the other summands of Xi are
unknown to Pk. The value Xi − ak ranges over the interval
½0; q− 1� :. Although bi values can not be zero, for the sum
∑j≠i bj; the probability of non-zero values are equal and the
probability difference Pð0Þ : − Pðx ≠ 0Þ : ¼ 1

ðq−1Þ2 is negligible.

Therefore, the value Xi − ak can be regarded as uniformly
distributed over Zq: □

Theorem 1. PATS is secure against offline dictionary attacks
under the DDH assumption.

Proof. We examine this security in two cases: active and
passive attacks. First, we will show that a malicious attacker
pretending as a participant Pj but does not have the password s;
cannot distinguish the ciphertext hi from a random non-
identity element ofG: This case corresponds to active attacks.
At the end of the second round of the protocol, the informa-
tion that the attacker gathers from Pi is the values gai ;gbi ;
hi ¼ðgXiÞbis and the corresponding ZKP’s of exponents. In
the second round, Pi sends hi ¼ðgXiÞbis where Xi as given in
Lemma 1. Here, Pi allocates the element gXi as a random
generator. The randomness follows from Lemma 1. It is
well-known that any nontrivial element of a prime order
group is a generator [36]. The element gXi is nontrivial with
high probability, and this can be guaranteed by Pi by simply
checking it. Therefore, gXi is a generator. The password s and
the random value bi are in the interval ½1; q− 1� : and are
unknown random values for the attacker. Therefore, by the
DDH assumption, the malicious party cannot distinguish the
value hi from a random non-identity element in the group.

In the second case, suppose a passive attacker gathers the
information floating on the air while two authentic partici-
pants Pi and Pj are communicating. The attacker has no
better knowledge than the first case. So, it can neither corre-
late the values hi and hj nor distinguish them from a random
non-identity element in the group. □

We know that the original Diffie–Hellman key exchange
method is vulnerable to a man-in-the-middle attack. Since
Round 1 and Round 2 of the suggested protocols include
zero-knowledge proof of the values bi and bis, an active
attacker will not be successful without knowing the value
of s; this provides resistance to the man-in-the-middle
attacks.

We previously mentioned that our protocol relies on the
hardness assumption of the DDHproblem.Moreover, we noted
that p and q are large primes such that q is a divisor of p− 1.
DDH is believed to be intractable in all the groups when p¼
kqþ 1 for prime numbers p and q and q>p1=10 [37].

In the implementation, we considered p to be a safe
prime such that p¼ 2qþ 1, where q is also a prime [38]. This
assumption makes PATS rely on the DDH problem’s

hardness assumption since q¼ðp− 1Þ :=2>p1=10 for suffi-
ciently big values of p.

Suppose a malicious entity was able to disclose the value
of K. In that case, the security of other sessions will not be
disrupted. This comes from the necessity that each party in
the protocol is expected to select a private integer ai uni-
formly at random from ½0; q− 1� : at each run of the scheme.
This feature is known as known-session secrecy [24].

Using a zero-knowledge protocol for the exponents ai
and bi is accepted to be secure since a party does not have
to reveal these values to other parties and parties who receive
gai and gbi will verify that these values belong to the sender.

It is not surprising that PATS, in the spirit of JPAKE,
provides similar security requirements. The footprints in
JPAKE give the idea, while below, we show that PATS pro-
vides forward secrecy. Theorem 2 shows that PATS provides
forward secrecy under the square computational Diffie–Hellman
assumption (SCDH).

Theorem 2. In PATS protocol, under the SCDH assumption,
the current session key components will remain secure if the
password is disclosed later.

Proof. Suppose the password s is captured by a malicious
attacker. We will observe that the previously derived Kij
components can not be disclosed if the SCDH assumption
holds. Note that the PATS protocol is designed in such a way
that no key component is the identity element. We consider
the key component K12. Mutatis mutandis one may derive
the same conclusion for the other key components. To
ease the formulation set A¼ a1 þ a2 þ a3: The idea is if an
attacker can obtain K12 ¼ gðAþb3Þb1b2 from the data set fga1 ;
ga2 ; ga3 ; gb1 ;gb2 ;gb3 ;gðAþb1þb2Þb3 ; gðAþb1þb3Þb2 ; gðAþb2þb3Þb1g:

then it can compute gx2 from g and gx for any uniform
randomly chosen x value in range ½1; q− 1� :, which contra-
dicts the SCDH assumption.

Let attacker have an algorithm, which can return K12 ¼
gðAþb3Þb1b2 for the ordered input set fgA;gb1 ;gb2 ;gb3 ;
gðAþb1þb2Þb3 ;gðAþb1þb3Þb2 ;gðAþb2þb3Þb1g:: So for gx with
random exponent x in ½1; q− 1� : the algorithm gives
the evaluation f ðgxÞ : ¼ g½ð−2xþaÞðxþdÞ�ðxþbÞðxþcÞ ¼
g−x3þð−c−bþaþdÞx2þð−bcþacþabþdcþdbÞxþabcþbcd for the given data
set fg−2xþa; gxþb; gxþc;gxþd;gðxþaþbþcÞðxþdÞ; gðxþaþbþdÞðxþcÞ;
gðxþaþcþdÞðxþbÞg: where a; b; c; d are arbitrary chosen in Zq:
Similarly, we determine f ðgxþ1Þ :: It follows that using the
given information one can evaluate the element gx2 ¼
½ f ðgxÞf ðgxþ1Þ−1gð2a−2b−2cþ2dÞxþð−1þa−b−cþd−bcþacþabþdcþdbþabcþbcdÞ�13: □

PATS is information-theoretically secure [39] since less
than the required number of shares will provide no informa-
tion about the secret. Moreover, the share of each party is as
long as the final secret K .

An active attacker is limited to testing/checking only one
s value per execution of the protocol since parties will refresh
ai and bi values at each run of the protocol. PATS prevents
online dictionary attacks.

In this section, we have given an adversary model and
analyzed the security requirements that PATS satisfies. In the
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next section, the performance analysis of PATS, including
computational load and run-time analysis, will be provided
for each variant of the protocol defined previously. The sec-
tion will include a comparison of two variants in terms of
run-time.

6. Performance Analysis of PATS

In this section, we present the performance analysis of PATS.
First, we discuss the computation overhead of PATS and
then present the running time results of PATS.

Both protocols are implemented in Python on a PC (8
CPU Cores, 16GB RAM) running macOS Monterey. ZKP
proof is not included in the implementation, and parties are
not separated to cause messaging costs; i.e., messaging delays
are not incorporated.

Prime numbers of different lengths are selected using
OpenSSL prime generation with the “safe” parameter. If
the number generated is p, this feature helps us check that
ðp− 1Þ :=2 is also a prime number.

6.1. PATS in Finite Fields

6.1.1. Computational Load. A party Pi needs to do the follow-
ing computations in a round of PATS protocol in finite fields:

(1) gai

(2) gbi

(3) bis
(4) g∑

3
j¼1ajþ∑j≠i bj ¼ ga1 ×ga2 × ga3 × gbj × gbk

(5) hi ¼ðg∑3
j¼1ajþ∑j≠i bjÞ : 

ðbisÞ

(6) Ki ¼ðKij;KitÞ : where Kij ¼ðhj × ðgbjÞ−bisÞ :Þ :

bi

In Round 1, it takes two exponentiations to compute
gai mod  p and gbi mod  p and two additional exponentia-
tions will be necessary to compute commitments for the
zero-knowledge proofs of the multiples ai and bi if Schnorr
non-interactive ZKP will be applied. To prove that gx ¼ y,
the prover must perform one exponentiation as a commit-
ment. After Round 1, every party should verify two Schnorr
ZKPs. For each ZKP, it takes one exponentiation and one
multiplication for the verifier to verify and one multiplica-
tion and one addition for the prover to generate a response.
In Round 2, there will be four multiplications of previous
calculations and broadcast messages, one multiplication to
compute the power bis and one exponentiation to compute
hi value. To compute the zero-knowledge proof of the

exponent bis, additional exponentiation will be necessary to
compute a commitment for the zero-knowledge proofs of the
multiple bis. To verify this Schnorr ZKP, each verifier com-
putes one exponentiation and one multiplication, and the
prover computes one multiplication to generate a response.
In Round 3, to reduce the cost of inverse/exponents, we
suppose that the participant Pi evaluates q− bis then gets the
value Kij ¼ ½hj × ½ðgbjÞbis�−1�bi ¼ðhj × ðgbjÞq−bisÞ Þbi : So each
key share component costs two exponentiations, one multi-
plication, and one addition. Regarding communication,
TTP-verified (2,3)-PATS starts with n¼ 3 broadcast mes-
sages coming from TTP to parties. In Round 1, each party
sends a broadcast message to transfer the values gai mod  p
and gbi mod  p. After Round 1, every party should verify two
Schnorr ZKPs, which requires one commitment, one
response from the prover, and one challenge from the veri-
fier. In Round 2, two broadcast messages will be sent per
party to transfer the values hi. To compute the zero-
knowledge proof of the exponent bis, the prover must send
two messages, and the verifier must communicate with one
message. In Round 3, two broadcast messages will be per
party to transfer the values Ki. For the distributed (2,3)-
PATS, the number of messages will be equal to the total
number of messages in TTP-verified (2,3)-PATS since there
are three broadcast messages in Round 0 of the TTP-verified
version. However, in Round 3, it does not require broadcast.
Instead, all parties send their share only to TTP. A break-
down of the cost and number of broadcast messages of each
round is summarized in Table 1.

6.1.2. Run-Time Analysis. Implementing the proposed pro-
tocol in finite fields uses p values of different lengths and 256-
bit q values. As seen in Figure 6, the length of p affects the
run-time of the protocol significantly. The run-time is close
to 0.02 s when p is of the length 512 bits, while it reaches close
to 0.33 s for a random p value of length 3,072 bits.

6.2. PATS Using Elliptic Curves

6.2.1. Computational Load. A party Pi needs to do the fol-
lowing computations in a round of PATS protocol using
elliptic curves:

(1) aiG
(2) biG
(3) sbi
(4) ð∑3

j¼1aj þ∑j≠i bjÞ :G¼ a1Gþ a2Gþ a3Gþ bjGþ bkG
(5) Hi ¼ sbið∑3

j¼1aj þ∑j≠i bjÞ :G

TABLE 1: Analysis of computational cost of PATS in finite fields.

Cost breakdown No. of operations per party No. of broadcast messages

0 Round 0 — 3∗

1 Round 1 2 E, 2 (ZKP) 6+ 2 [3]
2 Round 2 1 E, 5 M, (ZKP) 6+ [3]
3 Round 3 4 E, 2 M, 2 A 6− 3∗

4 Total 7 E, 7 M, 2 A, 3 (ZKP) 18+ 3 [3]
1E, exponentiation in Zq. 2M, multiplication in Zq. 3A, addition in Zq. 4(ZKP)= (3 E, 2 M, 1 A), # of operations required for a single ZKP. 5[x], # of messages
required for a single ZKP. ∗TTP-verified (2,3)-PATS requires three broadcast messages from TTP in Round 0, and three fewer messages in Round 3.
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(6) Ki ¼ðKij;KitÞ : where Kij ¼ biðHj − bjbisGÞ:

In Round 1, it takes two elliptic curve scalar multiplications
to compute aiG and biG, and two additional elliptic curve
scalar multiplications will be necessary to compute commit-
ments for the zero-knowledge proofs of the multiples ai and bi
if Schnorr non-interactive ZKP is applied. To prove that Q¼
½a� :P where Q and P are two points and a is a scalar, the prover
must perform one scalarmultiplication as a commitment. After
Round 1, every party should verify two Schnorr ZKPS. Each
ZKP takes two scalar multiplications for the verifier to verify
and one multiplication and one addition for the prover to
generate a response. In Round 2, there will be four point
additions of previous calculations and broadcast messages,
one multiplication to compute the power sbi and one scalar
multiplication to compute Hi value. To compute the zero-
knowledge proof of the exponent bis, an additional scalar
multiplication will be necessary to compute a commitment
for the zero-knowledge proof. To verify this Schnorr ZKP,
each verifier computes one scalar multiplication and one
point addition, and the prover computes one multiplication
to generate a response. Round 3 requires three scalar multi-
plications (one of them is multiplying by −1) and one point
addition for each Kij value.

Regarding communication, TTP-verified (2,3)-PATS starts
with n¼ 3 broadcastmessages fromTTP to parties. In Round 1,
each party sends a broadcast message to transfer the values ai
and bi. After Round 1, every party should verify two Schnorr
ZKPS, which requires one commitment and one response from
the prover and one challenge from the verifier. In Round 2, two
broadcast messages will be sent per party to transfer the values
hi. To compute the zero-knowledge proof of the exponent bis,
the prover must send two messages, and the verifier must
communicate with one message. In Round 3, two broadcast
messages will be per party to transfer the values Ki. For the
distributed (2,3)-PATS, the number of messages will be equal
to the total number of messages in the TTP-verified (2,3)-
PATS since there are three broadcast messages in Round 0

of the TTP-verified version, but in Round 3, it does not
require broadcast. Instead, all parties send their share only
to TTP. A breakdown of each round’s cost and the number
of broadcast messages is summarized in Table 2.

6.2.2. Run-Time Analysis. The implementation of the pro-
posed protocol uses different curves, including P-192, P-224,
P-256, P-384, and P-521, which are recommended in the
FIPS PUB 186-4 digital signature standard report [40]. The
length of the prime field p changes with each selected curve,
and the run-time of the protocol is affected; however, the
run-time for the P-521 curve is still less than half of a second,
as seen in Figure 7.

6.3. (t,n)-PATS

6.3.1. Computational Load. A party Pi needs to do the follow-
ing computations in ðn− 1; nÞ :-PATS protocol in finite fields:

(1) gai

(2) gbi

(3) bis
(4) g∑n

j¼1ajþ∑j≠i bj

(5) hi ¼ðg∑n
j¼1ajþ∑j≠i bjÞbis

(6) Ki ¼ðKijÞj≠i where Kij ¼ðhj × ððgbjÞbisÞ−1Þbi

In Round 1, it takes two exponentiation to compute
gai mod  p and gbi mod  p and two additional exponentiation
will be necessary to compute commitments for the zero-
knowledge proofs of the multiples ai and bi if Schnorr
non-interactive ZKP will be applied. To prove that gx ¼ y,
the prover must perform one exponentiation as a commit-
ment. After Round 1, every party should verify two Schnorr
ZKPs. For each ZKP, it takes one exponentiation and one
multiplication for the verifier to verify and one multiplica-
tion and one addition for the prover to generate a response.

In Round 2, the party multiplies 2n− 1, and many group
elements are obtained and gathered from previous calcula-
tions and broadcasted messages. This requires 2n− 2 group
multiplication. A scalar multiplication to compute the power
bis and an exponentiation to compute hi value evaluated. To
calculate the zero-knowledge proof of the exponent bis, addi-
tional exponentiation will be necessary to compute a com-
mitment for the zero-knowledge proofs of the multiple bis.
To verify this Schnorr ZKP, each verifier computes one expo-
nentiation and one multiplication, and the prover computes
one multiplication to generate a response.

In Round 3, the key share sequence of length n− 1 is
evaluated. As in the ð2; 3Þ :-PATS the exponent − bis value
is obtained by one addition. To be explicit, Pi evaluates q−
bis: This value will be used for each component in this step
and any further iterative steps. After obtaining the q− bis
value, each component Kij of the key share takes two expo-
nentiation and one multiplication operation.

When the first three rounds end, ðn− 1; nÞ:-PATS is com-
pleted. For t¼ n− r, the corresponding ðt; nÞ :-PATS will be
calculated iteratively in r-steps. Here, ðn− 1; nÞ :-PATS is the
initial step. Each iteration step consists of two rounds. Let us
discuss the computational cost of the kth step. In Round 1,
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FIGURE 6: Run-time of (2,3)-PATS in finite fields. The results of 100
experiments within the 95% confidence interval are shown in the
figure.
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each Pi calculates the exponent set fðgbj1…bjk−1 Þbig: where

indices jr ranges over I and distinct. This requires n − 1
k − 1

� �
:

exponentiation since the base of the exponentiation was
already calculated in the previous step. After the first round
of the kth iteration step, the set fðgbj1…bjk−1 Þbigjr2I will be
broadcasted with the keyshare sequence Ki obtained in
ðk− 1Þ :th step. In the second round of the kth iteration step,
Pi computes the new Ki ¼fKij1…jkg: sequence for distinct jr 2
I; where Kij1…jk ¼ ½Kj1…jk × ½ðgbj1…bjk Þbis�−1�bi . Recall that the
value q− bis was already obtained in the initial step. Therefore,
each component requires one multiplication and two exponen-

tiation. As the length of new key share sequence is n − 1
k

� �
:;

computational cost of the second round is n − 1
k

� �
: 1M;ð 2EÞ :.

Regarding communication, TTP-verified ðt; nÞ:-PATS
starts with n broadcast messages coming from TTP to par-
ties. In Round 1, each party sends a broadcast message to
transfer the values gai mod  p and gbi mod  p. After Round 1,
every party should verify two Schnorr ZKPs, which requires
one commitment, one response from the prover, and one
challenge from the verifier. In Round 2, two broadcast mes-
sages will be sent per party to transfer the values hi. To
compute the zero-knowledge proof of the exponent bis, the

prover must send two messages, and the verifier must com-
municate with one message. In Round 3, two broadcast mes-
sages will be per party to transfer the values Ki. For the
repeated steps of ðt; nÞ :-PATS, 2ðn− t − 1Þ : broadcast mes-
sages will be sent from each party to deliver the sequence
Ki ¼ðKijÞj≠i and gbjbi mod  p. For the Distributed ðt; nÞ:-
PATS, the number of messages will be equal to the total
number of messages in TTP-verified ðt; nÞ :-PATS since there
are n broadcast messages in Round 0 of the TTP-verified
version. However, in Round 3, it does not require broadcast.
Instead, all parties send their share only to TTP. A break-
down of the cost and number of broadcast messages of each
round is summarized in Table 3.

6.4. Limitations. Considering the efficiency requirement for
ðt; nÞ :-threshold scheme, in cases where t is less than n− 1,
we think the path followed in PATS will be cumbersome. We
decided to picture the scheme for distributed variants over
finite fields. The generalized version can be phrased straight-
forwardly on elliptic curves, mutatis mutandis.

6.5. Comparison. Table 4, compiled from the report NIST 800-
57 Recommendation for Key Management [41], provides a
security strength level for the approved algorithms of finite-
field cryptography and elliptic-curve cryptography. Column 2
states the average run-time of PATS in finite fields/PATS using
elliptic curves, respectively. Column 3 states the minimum
size of parameters in standardized finite-field cryptogra-
phy. Column 4 gives the range of f for algorithms based
on elliptic-curve cryptography. Using curve P-521 provides
256-bit security strength and a very efficient protocol for
PATS. Note that protocols with a security strength of less
than 112 bits are no longer approved, and 192-bit and 256-
bit key strengths for FFC algorithms are not considered by
NIST due to interoperability and efficiency problems [41].

7. Future Work

PATS has to be retrofitted with classical security tools to be
applicable in practice. This includes the integration of nonces
or timestamps to mitigate replay attacks and using message
authentication codes to safeguard against integrity attacks.
We left them as future work since they are classical approaches.
As another future work, we plan to develop techniques for
reducing the messaging load in ðt; nÞ :-PATS.

TABLE 2: Analysis of computational cost of PATS using elliptic curves.

Cost breakdown No. of operations per party No. of broadcast messages

0 Round 0 — 3∗

1 Round 1 2 SM, 2 (ZKP) 6+ 2 [3]
2 Round 2 1 SM, 4 PA, 1 M, (ZKP) 6+ [3]
3 Round 3 3 SM, 1 PA 6− 3∗

4 Total 6 SM, 5 PA, 1 M, 3 (ZKP) 18+ 3 [3]
1SM, elliptic curve scalar multiplication. 2PA, elliptic curve point addition. 3M, multiplication 4A, addition. 5(ZKP)= (3 SM, 1 PA, 1 M, 1 A), # of operations
required for a single ZKP. 6[x], # of messages required for a single ZKP. ∗TTP-verified (2,3)-PATS requires three broadcast messages from TTP in Round 0,
but three fewer messages in Round 3.
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FIGURE 7: Run-time of PATS using ECC. The results of 100 experi-
ments within the 95% confidence interval are shown in the figure.
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8. Conclusion

In this paper, we proposed a password-authenticated (2, 3)-
threshold group key-sharing mechanism called PATS. We
first mentioned how it differs from threshold secret key-
sharing schemes with its structure. We then showed two
approaches to PATS: distributed (2,3)-PATS and TTP-
verified (2,3)-PATS. We also noted that both approaches
could have two different variants implemented using finite
fields or elliptic curves. We generalized PATS to ðt; nÞ:-
threshold scheme. We gave security requirements and pre-
sented how PATS satisfies them. The performance analysis
of PATS is explained in detail. Finally, we reviewed related
work in this area by elaborating on PGKE protocols and
threshold secret sharing.

Data Availability

The source code for the finite field and elliptic curve imple-
mentations can be found at https://wins.ceng.metu.edu.tr:
8085/gitlab/adnan/pats.
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